ECED2200 - DIGITAL CIRCUITS

Multiplexor & Demultiplexor

GENERAL NOTES

- See updates to these slides: <u>www.newae.com/teaching</u>
- These slides licensed under '<u>Creative Commons Attribution-ShareAlike 3.0</u>
 <u>Unported License</u>'
- These slides are not the complete course they are extended in-class
- You will find the following references useful, see <u>www.newae.com/teaching</u> for more information/links:
 - The book "Bebop to the Boolean Boogie" which is available to Dalhousie Students
 - Course notes (covers almost everything we will discuss in class)
 - Various websites such as e.g.: <u>www.play-hookey.com</u>
 - The book "Contemporary Logic Design", which was used in previous iterations of the class and you may have already

MULTIPLEXOR/DEMULTIPLEXOR

WHAT IS A MULTIPLEXOR?

2:1 MUX

4:1 MUX

EQUATIONS OF MUX

S1	S0	Q0
0	0	I ₀
0	1	I_1
1	0	I_2
1	1	I_3

8:1 MUX

MUX AS DESIGN BLOCK

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

MUX AS DESIGN BLOCK

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

MUX AS A DESIGN BLOCK

WHAT IS A DEMULTIPLEXOR?

2:4 DECODER / DEMUX

13

NOTATION INFORMATION

 When using 'Enable' (tie to '1'), we have a decoder. When inputting data, we have demultiplexor (demux).

Naming:

- Decoder/demux named by "control signals:outputs" (e.g.: 2:4)
- Mux named by "inputs:outputs" (e.g.: 4:1)

14

DECODER AS A DESIGN BLOCK

DECODER AS A MINTERM GENERATOR

TRI-STATE GATES

INVERTER

3-STATE BUFFER

A	E	Q
0	1	0
1	1	1
0	0	Z
1	0	Z

USES FOR 3-STATE BUFFERS

REFERENCES

See class notes "Beyond Simple Logic Gates" (page 133)